Diamagnetic Susceptibilities of Various Inorganic Phosphates and Organic Phosphate Esters

Fujio Takahashi,* Yasuzo Sakai, and Toshihito Yoshida Department of Applied Chemistry, Faculty of Engineering, Utsunomiya University, 2753 Ishii-machi, Utsunomiya 321 (Received August 4, 1992)

The diamagnetic susceptibilities of various inorganic phosphates as well as various organic phosphate esters, such as ATP, ADP, and phosphocreatine, were determined by Gouy's method. The diamagnetic susceptibility of H_3PO_4 was estimated to be $-43.5 \times 10^{-6} \text{cm}^3 \text{mol}^{-1}$ from plots of the diamagnetic susceptibility against the total number of electrons in the cation by measuring various inorganic phosphates. The free-energy changes $(\Delta G's)$ for the hydrolysis of the phosphate ester were found to correlate with the differences in the diamagnetic susceptibilities between the phosphate esters and their products of hydrolysis. The diamagnetic susceptibility of :PO₃H₂ was obtained to be $-28-39\times10^{-6}~{\rm cm}^3~{\rm mol}^{-1}$, which decreased with increasing ΔG .

There are abundant results concerning the diamagnetic susceptibilities of various organic and inorganic compounds, as well as those of mixtures. 1—9) It is well known that it is possible to estimate the diamagnetic susceptibilities of organic compounds by using an additive property of the magnetic susceptibility (Pascal' additive law). 1) On the other hand, the diamagnetic susceptibilities of organic phosphate esters have been scarcely reported, except for that of phosphatidylcholine.¹⁰⁾

© 1993 The Chemical Society of Japan

One of the purposes of this paper was to determine every molar diamagnetic susceptibility $(\chi_{\rm M})$ of the phosphate esters, such as ATP, ADP, glucose 6-phosphate, and phosphocreatine. Another was to determine the difference between the $\chi_{\rm M}$ of the phosphate ester and $\chi_{\rm M}$ of its product of hydrolysis $(\Delta \chi)$, which was obtained by the following equation:

$$\chi(RO:PO_3H_2) - \chi(RO:H) = \Delta\chi, \tag{1}$$

where $\chi(RO:PO_3H_2)$ and $\chi(RO:H)$ denote the χ_M of the phosphate ester and the $\chi_{\rm M}$ of the product of hydrolysis, respectively. Since the magnetic susceptibility exhibits an additive property, Eq. 1 can be replaced by

$$\Delta \chi = \chi(:PO_3H_2) - \chi(:H)$$

and

$$= \chi(PO_3H_2^+) - \chi(H^+), \tag{2}$$

where $\chi(:PO_3H_2)$, $\chi(:H)$, $\chi(PO_3H_2^+)$, and $\chi(H^+)$ denote the $\chi_{\rm M}$ of :PO₃H₂, the $\chi_{\rm M}$ of :H, the $\chi_{\rm M}$ of PO₃H₂⁺ and the $\chi_{\rm M}$ of H⁺, respectively. The notation, ":" in :PO₃H₂ and :H denotes a non-bonding pair of electrons. $\chi(:PO_3H_2)$ can be expressed as

$$\chi(:PO_3H_2) = \Delta\chi + \chi(:H)$$
 (3)

from Eq. 2.

It is widely known that the ΔG 's for the hydrolysis of ATP and phosphocreatine are higher than that for the other reaction, since the electronic configuration of the P-O bond for ester formation makes different from that of other bonds due to a resonance hybrid of the phosphate group. The diamagnetic susceptibilities of the

substances reflect the electronic configuration, including the chemical bond. ΔG can be considered as being energy related to the electronic configuration. It was considered that $\Delta \chi$ in Eq. 1 could be determined by an extrapolation to $\Delta G = 0$ in the presence of a nonbonding pair of electrons between P and O in the phosphate ester. The relationship between $\chi(:PO_3H_2)$ and ΔG for the hydrolysis of the phosphate ester was examined.

Experimental

Measuring Apparatus. The diamagnetic susceptibilities were measured by Gouy's method at 25±1°C in an air-conditioned room. An electronic balance (A & D, ER-182A) was used. The permanent magnet used had a maximum field strength of 7400 Oe ($1 \, \mathrm{Oe} = 10^3 \mathrm{A m}^{-1}$) with a 1.5 cm gap of the pole pieces, whose diameter was 5 cm across.

Materials. All of the inorganic phosphates used were of guaranteed grade, or the best commercially grade available. Disodium salts of various phosphate esters were used, except for monosodium salt of FMN. The contents of water and sodium were determined by measuring the dry weight at 110-120°C, and by using a sodium ion-selective electrode. The organic components, such as glucose and adenosine, were determined by various enzyme methods, liquid chromatography and spectrophotometry. The results are summarized in Table 1. The liquid chromatograms showed one peak for both AMP and ATP, and two peaks for ADP. In the case of ADP, it was estimated from the retention time and peak area that one can be assigned as 97.7% ADP, and the other as 2.3% AMP. By using Wiedemann's additive law, 1) the $\chi_{\rm M}$ of ADP was revised to be -196×10^{-6} cm³ mol⁻¹. The empirical formula given in Table 1 was derived within 4% error by taking into consideration of all of the analytical results. The already known diamagnetic susceptibilities were used to calculate the $\chi_{\rm M}$ values of various compounds. 11) The $\chi_{\rm M}$ values of H₂O, Na⁺, H₂, and H⁺ were known to be -12.96, -5, -3.96, and 0×10^{-6} cm³ mol⁻¹. From a calculation based on the additive property, the $\chi(:H) = \chi(H_2) - \chi(H^+) = -4.0 \times 10^{-6} \text{ cm}^3 \text{ mol}^{-1} \text{ was}$ obtained. Various $\chi_{\rm M}$ of the phosphate esters were determined by excluding the diamagnetic susceptibilities of both crystal water and sodium ion.

Table 1. Analytical Results on Organic Phosphate Esters

	Water %	Na	Enzyme method %	Total %	Spectro- photometry %	Experimental formula	Enzyme used ^{a)}
AMP 2Na	7.34	10.2	82.1	99.6	93.6	C ₁₀ H ₁₂ N ₅ O ₇ P Na _{1.86} 1.72H ₂ O	MK, PK, LDH
ADP 2Na	6.76	8.38	81.8	96.9	96.1	$C_{10}H_{13}N_5O_{10}P_2 Na_{1.89} 1.95H_2O$	PK, LDH
ATP 2Na	6.44	6.97	82.5	95.9	98.9	$C_{10}H_{14}N_5O_{13}P_3 Na_{1.86} 2.19H_2O$	HK, G6P-DH
Glucose 6-phosphate 2N	11.9	11.0	73.4	96.3		$C_6H_{11}O_9P Na_{1.68} 2.32H_2O$	G6P-DH
Glucose 1-phosphate 2N	1a 5.08	12.9	72.5	90.5		$C_6H_{11}O_9P Na_{2.00} 1.01H_2O$	G6P-DH, PGM
Phosphocreatine 2Na	21.2	14.1	63.4	98.7		$C_4H_8N_3O_5P Na_{2.02} 3.88H_2O$	CK, HK, G6P-DH
FMN Na	15.9	5.26				$C_{17}H_{20}N_4O_9P$ $Na_{1.09}$ $4.21H_2O$	

a) MK: Adenylate kinase, PK: Pyruvate kinase, LDH: Lactose dehydrogenase, HK: Hexokinase, G6P-DH: Glucose 6-phosphate dehydrogenase, CK: Creatine kinase, PGM: Phosphoglucomutase. Molar absorption coefficient of AMP, ADP, and ATP: 15.4×10^3 at 260 nm.

Results and Discussion

The diamagnetic susceptibilities of various inorganic phosphates were determined, as shown in Table 2. The values of the molar susceptibilities were plotted against the total number of electrons in the cation of each salt in the usual way (Fig. 1). From the intercept of Fig. 1, the $\chi_{\rm M}$ of H₃PO₄ was obtained to be -43.5×10^{-6} cm³ mol⁻¹. In a similar way, the $\chi_{\rm M}$ of pyrophosphoric acid was obtained to be -79.0×10^{-6} cm³ mol⁻¹ by subtracting the diamagnetic susceptibility of sodium $(4\times(-5\times10^{-6})~{\rm cm^3~mol^{-1}})$ from the $\chi_{\rm M}$ of Na₄P₂O₇. Since pyrophoshphoric acid hydrolyzes to form phosphoric acid, Eq. 1 is modified to

$$\chi(H_2PO_3O : PO_3H_2) - \chi(H_2PO_3O : H)$$

$$= \chi(:PO_3H_2) - \chi(:H) = \Delta\chi, \tag{4}$$

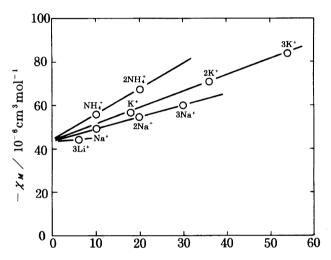

where $\chi(H_2PO_3:O:PO_3H_2)$ and $\chi(H_2PO_3O:H)$ are expressed as the diamagnetic susceptibilities of pyrophosphoric acid and phosphoric acid, respectively. From Eq. 4 and the intercept in Fig. 1, we obtained $\chi(:PO_3H_2)=-39\times10^{-6}~{\rm cm}^3~{\rm mol}^{-1}$.

Table 3 shows the $\chi_{\rm M}$ of various phosphate esters

Table 2. Diamagnetic Susceptibility of Inorganic Phoshphates

Phosphate	$-\chi_{ m M}$	$-\chi_{\rm M}/10^{-6}~{ m cm}^3~{ m mol}^{-1}$ for PO ₄ ⁻³ , HPO ₄ ⁻² , H ₂ PO ₅		
F	$10^{-6}~{\rm cm^3~mol^{-1}}$	obtained by calculation a)		
Li ₃ PO ₄	44.4	42.6		
Na_3PO_4	60.3	45.3		
Na_2HPO_4	54.7	44.7		
NaH_2PO_4	49.1	44.1		
K_3PO_4	84.3	45.3		
K_2HPO_4	71.1	43.7		
$\mathrm{KH_{2}PO_{4}}$	57.0	44.0		
$(NH_4)_2HPO_4$	67.5	44.5		
$(NH_4)H_2PO_4$	56.2	44.7		
$Na_4P_2O_7$	99.0			

a) The values, 0, -0.6, -5, -13, -11.5×10⁻⁶ cm³ mol⁻¹, respectively were used as $\chi_{\rm M}$ of H⁺, Li ⁺, Na⁺, K⁺, NH₄⁺.¹¹)

Total numbers of electron in the cation

Fig. 1. Relationship between the molar diamagnetic susceptibilities of various salts and the total number of electrons in the cation.

(excluding the diamagnetic susceptibilities of both crystal water and sodium ion). The relationship between the $\Delta \chi$ and ΔG for the hydrolysis is given in Fig. 2. Well-known values of ΔG are quoted from a textbook of biochemistry. The $\chi_{\rm M}$ of the phosphoric ester group decreased with increasing ΔG . By extrapolating the diamagnetic susceptibility at $\Delta G=0$ in Fig. 2, $\Delta \chi$ became -34.5×10^{-6} cm³ mol⁻¹, which, in turn, yielded $\chi(:PO_3H_2) = -38.5 \times 10^{-6} \text{ cm}^3 \text{ mol}^{-1} \text{ by Eq. 3.}$ The P-O bonding electrons were considered to be in the same situation as a non-bonding pair of the electrons at $\Delta G=0$. Since $\chi(:PO_3H_2)+\chi(O)=\chi(H_2PO_4^-)$, the $\chi_{\rm M}$ of ${\rm H_2PO_4^-}$ was obtained to be $-44\times10^{-6}~{\rm cm^3\,mol^{-1}}$ by adding the $\chi_{\rm M}$ of oxygen atom $(\chi({\rm O}) = -5.3 \times 10^{-6}$ ${\rm cm}^3\,{\rm mol}^{-1})$ to $\chi(\ :{\rm PO}_3{\rm H}_2).$ This is in accord with the $\chi_{\rm M}$ of ${\rm H_2PO_4^-}$, obtained from inorganic phosphates.

It was supposed that both ΔG and the diamagnetic susceptibility might be influenced by the electronic configuration of the P-O bond, which, in turn, might be influenced by the magnetic field. The maximum $\Delta \chi$ at $\Delta G = 0$ in Fig. 2 was assigned to be the diamag-

Table 3. Diamagnetic Susceptibility of Phosphate Esters and Their Product of Hydrolysis

Phosphate ester	$-\chi_{ m M}$	Product of	ΔG for
(A)		hydrolysis(B)	$A{ ightarrow} B^{a)}$
• •	$10^{-6} \text{ cm}^3 \text{ mol}^{-1}$		$(kJ mol^{-1})$
Adenosine	139		
AMP	171	Adenosine	9.21
ADP	196	AMP	29.3
ATP	226	ADP	29.3
Glucose	99.3		
Glucose 1-phosphate	135	Glucose	20.9
Glucose 6-phosphate	131	$\operatorname{Glucose}$	13.8
Creatine	69.9		
Phosphocreatine	93.4	Creatine	43.1
Riboflavin	196		
FMN	226	Riboflavin	_

a) Cited from the textbook of biochemistry.

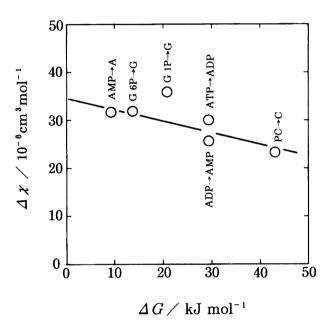


Fig. 2. Relationship between $\Delta \chi$ and ΔG . A: Adenosine, G: Glucose, G 6-P: Glucose 6-phosphate, G 1-P: Glucose 1-phosphate, C: Creatine, PC: Phosphocreatine.

netic susceptibility including a non-bonding pair of electrons in :PO₃H₂. On the other hand, the minimum $\Delta\chi$ should be involved in the highest energy-reserved chemical bond for a pair of electrons in :PO₃H₂. The difference of $\Delta\chi$ between the maximum and minimum values in Fig. 2 is about 12×10^{-6} cm³ mol⁻¹. This difference must be in accord with the diamagnetic susceptibility of the bonding pair of electrons.

The difference of $\chi_{\rm M}$ between FMN and riboflavin is

 $30\times10^{-6}~{\rm cm^3~mol^{-1}}$ from Table 3. By inserting this difference in Fig. 2, ΔG for the hydrolysis of FMN to produce riboflavin was estimated to be about 19 kJ mol⁻¹. If the correlation given in Fig. 2 were to be generally accepted, the values of ΔG , or the bond energy, could be estimated by measuring the diamagnetic susceptibility.

There has been no paper concerning the relationship between ΔG and $\Delta \chi$ to date. Further investigation is necessary regarding the above-mentioned speculation.

References

- 1) A. Weiss and H. Witte, "Magnetochemie," Verlag Chemie GmbH, Weinheim (1973); (Translated by M. Sorai, "Jiki Kagaku," Misuzu Shobo, Tokyo, (1980).
- 2) M. M. Abdel-Kader, Chem. Phys. Lett., **93**, 297 (1982).
- 3) M. M. Abdel-Kader, Acta Phys. Pol. A, **64**, 505 (1983).
- 4) M. M. Abdel-Kader, Bull. Chem. Soc. Jpn., **56**, 3134 (1983).
- 5) M. M. Abdel-Kader, Bull. Chem. Soc. Jpn., **63**, 586 (1990).
- 6) V. Baliah and J. J. D. Jeyanthy, *Indian J. Chem.*, Sect. A, 28, 472 (1989).
- 7) R. R. Gupta, Chem. Halides, Pseudo-Halides Azides, 1, 49 (1983).
- 8) M. L. G. Soria, J. L. Zurito, M. A. Postigo, and M. Katz, *Monatsh. Chem.*, **117**, 421 (1986).
- 9) I. L. Acevedo, M. A. Postigo, and M. Katz, *J. Solution Chem.*, **17**, 977 (1988).
- 10) E. Boroske and W. Helfrich, *Biophys. J.*, **24**, 863 (1978).
- 11) Nihon Kagakukai, "Kagaku Binran," Maruzen, Tokyo (1984).